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DRAM Evolution
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SDR and DDR
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DDR2, DDR3 and DDR4
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Motivation for Memory Research
❏ Widening gap between memory and CPU speeds

❏ Multiprocessors continue to scale

❏ Higher communication demands within the same power budget

❏ Memory-bound programs do not scale with CPU speed improvements

❏ Performance of many applications are already memory-bounded

❏ Huge memory data sets

❏ Working set size (local and global)

❏ Several memory technologies, HMC, HBM, WIDE I/O, DDRx SDRAM, 
eDRAM, ...

❏ For the NVDIMM-P paradigm:
❏ DRAM transparent to the host or visible to the host?
❏ Challenges for host controller, DIMM controller, OS, ...
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Moving data is Energy Expensive
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Source: GPU Computing to exascale and beyond, Bill Dally slides - NVIDIA



Source: Subhasish Mitra

DRAM Energy Contribution
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VP is key for memory exploration

❏ Power usage profiles
❏ Energy efficiency
❏ Latency
❏ Sustained mem. bandwidth
❏ Bottlenecks
❏ Impact of architectural changes
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Virtual prototypes enable us to get a good grasp of:

Valuable tools make us agile.

www.uni-kl.de/3d-dram/toolsgem5.org www.doulos.com/knowhow/systemc



DRAM Power Model on gem5

The DRAM Power Model on gem5 is implemented by DRAMPower
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github.com/tukl-msd/DRAMPowerwww.es.ele.tue.nl/drampower

❏ DRAMPower is build as a library and linked 
to gem5

❏ Each Rank object has an instance of the 
DRAMPower object

❏ Mem. Specs are given to the constructor

❏ During operation DRAM commands are 
passed to the library

❏ Energy components (rd, rw, act, pre, ref,...) 
are returned together with the total energy for 
the current time window

$ ls ext/drampower

$ vim src/mem/dram_ctrl.hh

$ vim src/mem/dram_ctrl.cc 

$ grep “power.powerlib” * -nrIil



Coming soon to gem5!

❏ Bankwise DRAMPower

❏ DRAM banks are getting denser (e.g., DDR2 to DDR4 
bank density increases from 0.5 Gb to 2 Gb. Similar 
trend for LPDDRx).

❏ Per bank contribution to the total power is increasing. 
Chip level power estimations may get less accurate 
when per-bank features are used.

❏ Required for modeling features like independent 
per-bank refresh and PASR.

❏ Temperature aware DRAMPower

❏ Exponential increase in currents with temperature

12



E.g., Partial Array Self Refresh (PASR)

❏ Power down mode with 
maximum  energy savings

❏ Complete DRAM is 
blocked from other 
commands

❏ DRAM manages refreshes 
internally

❏ DDR3 DRAM has 8 PASR 
modes
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Memory research with gem5

What do we need to explore DRAMs?

❏ Realistic Workload which requires a full system simulator
❏ Realistic Controller Model
❏ DRAM power model

For Example:

DRAM 
Vendor

Data Sheets

Tools rely on Datasheets!

❏ Datasheets are pessimistic due to 
large process margins

❏ How to explore future DRAM 
architectures?
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Estimation of future DRAM devices

DRAMSpec generates datasheets for current and future DRAM devices

❏ DRAMSpec is verified against datasheets and measurements
❏ It can even be used by non-DRAM experts
❏ Very fast execution time compared to circuit level simulation
❏ Generate specs to DRAMPower and gem5 (e.g., HMC model)
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Hybrid Memory Cube

❏ 3D stack of DRAM layers
❏ Logic layer at the base
❏ HMC crossbar for routing
❏ Per-vault controller
❏ TSV connecting dies
❏ Serial links connect HMC to 

host
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Tx Rx

Each line working at Gpbs

Max. Bandwidth per link:
16 lanes x 2 x 10 Gbps

320 Gbps / link 
(160 Gbps each direction)



HMC Simulation Model

HMC Host side 
contains Traffic 
generator setup and 
model of serial links 

Device contains 
crossbars vault 
controller and 
memory vaults
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CPU / Workload / Traffic gen

HMC System

Serial Links + SerDes (1-4)

Crossbar (link to vaults)

Vault controller

Memory



HMC hello world on gem5
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$ build/ARM/gem5.fast -d hmc_hello configs/example/hmc_hello.py

$ cd hmc_hello

$ okular config.dot.pdf

$ vim configs/example/hmc_hello.py
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❏ High-speed functional software models of physical hardware
❏ Visibility and controllability over the entire system
❏ Powerful debugging and analysis tools
❏ Reuse of components for future projects
❏ Fast design space exploration (for HW engineers)
❏ Easy to exchange, worldwide 
❏ Concurrent HW and SW development:

Virtual Prototypes In Industry
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SystemC IEEE 1666

❏ Modeling language for HW and SW components

❏ Extends C++ to an event-driven simulation kernel

❏ Different levels of accuracy

❏ IEEE Standard, Maintained by Accellera 

❏ 10-100x Faster than CA VHDL/Verilog Simulation

→However, standard CA SystemC is not fast enough to     

     boot, an operating system.
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Transaction Level Modeling

TLMCA
SystemC

Pin Accurate

Simulate every event! 100-10,000 X faster simulation!

CA
SystemC

TLM

Function Call

CLK

CLK

Source: Doulos website www.doulos.com
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Tool Vendors for TLM 2.0 VP

TLM is widely used in Industry:
The market of virtual platform tools:

❏ Synopsys - Platform Architect 
❏ Cadence - Virtual System Platform
❏ Mentor Graphics - Vista Virtual prototyping
❏ Imperas - OpenVP
❏ ASTC - VLAB Works

Virtual Platform Core Models:
❏ ARM (Fastmodels):

❏ only LT models based on JIT, non-free, library
❏ ARM Carbon (Former Carbon Design Systems):

❏ Cycle Accurate (CA) Models in TLM Wrapper, non-free, library
❏ Imperas / OVP:

❏ only LT, Free

→ An accurate, freely available and changeable core model is needed
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Coupling gem5 with SystemC

gem5 supports a SystemC coupling:

❏ Gem5 is build as a C++ library.

❏ It is linked into a SystemC simulation.

❏ A SystemC object implements the gem5 
event queue.

❏ Communication is done via TLM

Events

Logic

Time

Gem5SimControl

Events

Logic

Time
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Transaction Models in gem5

Timing

❏ The most detailed access: queuing delay + resource contention

❏ Similar to the TLM nb_transport interface.

 

Atomic

❏ Accesses are a faster than detailed access

❏ Used for fast forwarding and warming up caches

❏ Similar to the TLM b_transport interface

❏ Not good for performance simulation

 

Functional

❏ Similar to transport_dbg e.g. loading binaries, avoiding deadlocks in 
multi-level cache coherent networks
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Converting between TLM and gem5

Slave
Transactor

External 
Slave

Master Target

External
Master

Master
Transactor

Initiator Slave

recvFunctional(…) → transport_dbg(…)
recvAtomic(…)  → b_transport(…)
recvTimingReq(…)  → nb_transport(…)

transport_dbg(…) → recvFunctional(…)
b_transport(…) → recvAtomic(…)
nb_transport(…) → recvTimingReq(…)
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Transaction Explained

Slave
Transactor

External 
Slave

BUSCPU Memory

gem5 World SystemC World

command 
data_ptr
address 
data_length 
byte_enable_ptr 
streaming_width

Extensions

Generic Payload Object

&

Cmd
Data
Addr
Size
Flags

gem5 Packet

&

UPDATECOPY

Sender State
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Study the Examples in /gem5/utils/tlm/ 
❏ Slave Example:

❏ Master Example:

❏ Full System Example:

How to get Started?

Slave
Transactor

External 
Slavegem5

Traffic
Generator

TLM
Simple 

Memory
membus

../../build/ARM/gem5.opt ../../configs/example/fs.py               \

--tlm-memory=transactor --cpu-type=TimingSimpleCPU --num-cpu=1     \

--mem-type=SimpleMemory --mem-size=512MB --mem-channels=1 --caches \

--l2cache --machine-type=VExpress_EMM                              \

--dtb-filename=vexpress.aarch32.ll_20131205.0-gem5.1cpu.dtb        \

--kernel=vmlinux.aarch32.ll_20131205.0-gem5                        \

--disk-image=linux-aarch32-ael.img

External
Master

Master
Transactor

TLM
Traffic 

Generato
r

gem5
Memorymembus
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https://gem5.googlesource.com/public/gem5/+/master/util/tlm/examples


Practical Usage: General Flow

1. Compile gem5 normally: scons build/ARM/gem5.opt

2. Compile gem5 as a library:
scons --with-cxx-config --without-python build/ARM/libgem5_opt.so

3. Include the gem5 modules Gem5SimControl and Gem5SlaveTransactor 
and/or Gem5MasterTransactor in your SystemC project and connect them to 
your SystemC models. Be sure to pass an individual port name to the 
constructor of each transactor. 

4. Compile your project and link against the gem5 library.

5. Run normal gem5 with a custom python script or fs.py with 
--tlm-memory=<port-name> to generate m5out/config.ini. Be sure to set the 
tlm_data attribute of the External Masters/Slaves to the port name of the 
corresponding SystemC transactor.

6. Run your SystemC project and pass the m5out/config.ini file to your
Gem5SimControl object.
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A Memory Module in SystemC

→ util/tlm/examples/slave_port/sc_target.hh

struct Target: public sc_module {
  // TLM interface socket:
  tlm_utils::simple_target_socket<Target>   socket;

  // Storage
  unsigned char *mem;
 
  // Constructor
  Target(sc_core::sc_module_name  name, /* ... */);
  SC_HAS_PROCESS(Target);
 
  // TLM interface functions
  virtual void b_transport(tlm::tlm_generic_payload& trans,
                                      sc_time& delay);
  virtual unsigned int transport_dbg(tlm::tlm_generic_payload& trans);
  virtual tlm::tlm_sync_enum nb_transport_fw(
                 tlm::tlm_generic_payload& trans,
                 tlm::tlm_phase& phase,
                 sc_time& delay);
 
  // ...
};
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Connect the Memory to gem5

→ util/tlm/examples/slave_port/main.cc

Slave
Transactor

Target
“memory”

“transactor”

Gem5Sim
Control
“gem5”

socket

socket

sim_control

int sc_main(int argc, char **argv) 
{
    // Instantiate all modules
    Gem5SystemC::Gem5SimControl 
            sim_control("gem5", /* config ... */);
    Gem5SystemC::Gem5SlaveTransactor
            transactor("transactor", "transactor");
    Target memory("memory", /* config ... */);
 
    // Bind modules
    memory.socket.bind(transactor.socket);
    transactor.sim_control.bind(sim_control);
 
    // Start simulation
    sc_core::sc_start();
 
    return EXIT_SUCCESS;
}
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Configure gem5

→ util/tlm/conf/tlm_slave.py

External 
Slave

TrafficGen
“cpu”

IOXBar
“membus”

“tlm”

# Create a system with a Crossbar and a TrafficGenerator
system = System()
system.membus = IOXBar(width = 16)
# This must be instanciated, even if not needed
system.physmem = SimpleMemory()
system.cpu = TrafficGen(config_file = "tgen.cfg")
system.clk_domain = SrcClockDomain(clock = '1.5GHz',
    voltage_domain = VoltageDomain(voltage = '1V'))
 
# Create an external TLM port:
system.tlm = ExternalSlave()
system.tlm.addr_ranges = [AddrRange('512MB')]
system.tlm.port_type = "tlm_slave"
system.tlm.port_data = "transactor"
 
# Route the connections:
system.cpu.port = system.membus.slave
system.system_port = system.membus.slave
system.membus.master = system.tlm.port
 
# Start the simulation:
root = Root(full_system = False, system = system)
root.system.mem_mode = 'timing'
m5.instantiate()
m5.simulate()
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Run the Simulation

1. Build the example: $ cd util/tlm && scons

2. Create a gem5 config.ini file:
$ ../../build/ARM/gem5.opt conf/tlm_slave.py 

3. Run the simulation:
$ build/examples/slave_port/gem5.sc m5out/config.ini

TrafficGen
“cpu”

IOXBar
“membus” Slave

Transactor

Target
“memory”

“transactor”

Gem5Sim
Control
“gem5”

socket

socket

sim_control

External 
Slave

“tlm”
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Simulation Output

$ build/examples/slave_port/gem5.sc m5out/config.ini -e 200000 -d TrafficGen

[…]

0 s (=) : sc_main Start of Simulation

info: Entering event queue @ 0.  Starting simulation...

5 ns (=) : system.cpu LinearGen::getNextPacket: r to addr 0, size 4

5 ns (=) : system.cpu Next event scheduled at 10000

10 ns (=) : system.cpu LinearGen::getNextPacket: w to addr 4, size 4

15 ns (=) : system.cpu Received retry

15 ns (=) : system.cpu LinearGen::getNextPacket: r to addr 8, size 4

16675 ps (=) : system.cpu Received retry

75 ns (=) : system.cpu Received retry

75 ns (=) : system.cpu LinearGen::getNextPacket: r to addr c, size 4

[…]

Exit at tick 200000, cause: simulate() limit reached

The binary expects various options:
■ -e end of simulation at tick

■ -d set a gem5 debug flag
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gem5 Tips & Tricks

Motivation:
❏ gem5 has Lots of features, 

therefore lots of details!
❏ gem5’s learning curve starts 

slow.
❏ People get motivated to 

deep exploration when basic 
things work.

❏ Easy to remember all those 
tricks we learned in the past 
if they are in a repo!
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github.com/tukl-msd/gem5.TnT

$ git clone https://github.com/tukl-msd/gem5.TnT.git
$ cd gem5.TnT

$ sudo bash dep_install.sh

$ bash get_essential_repos.sh

$ bash get_essential_fs.sh

$ bash get_benchmarks.sh

$ cd arch/arm

$ bash run_arm_fs_android_ics.sh



Take Away Message

❏ Memory subsystem is complex
❏ DRAM devices have complex interface timing
❏ Large varying access time and energy consumption
❏ It is important to model this complex behavior very accurately but 

at the same time with high simulation speed
❏ Several interfaces HMC serial, HBM highly parallel, 3D DRAM 

TSVs + external interface
❏ Temperature issues (refresh interval)
❏ Hybrid Memory Systems (DRAM + NVM)
❏ From HW to OS many challenges!

“The Memory System: You Can't Avoid It,You Can't 
Ignore It, You Can't Fake It”. (Bruce Jacob)
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Other contributions and collaborations

❏ Elastic Traces - an alternative approach to speed-up simulation

❏ DRAM power-down states in gem5 - more sophisticated 
memory controller model
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Thank you
For more information visit ems.eit.uni-kl.de
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