
Presented by: Éder F. Zulian

 Microelectronic Systems Design Research Group
University of Kaiserslautern

Using gem5 for DRAM Exploration

Outline

❏ DRAM Evolution

❏ Motivation for Memory Research

❏ Accurate and Fast Models are Needed

❏ SystemC / TLM2.0 coupling in gem5

❏ Gem5 Tips & Tricks

1

DRAM Evolution

2

P=1 P=2 P=4 P=8

Image from Matthias Jung PhD Thesis

SDR and DDR

3

I/O
buffer

DRAM
array

DRAM
array

Based on: What Every Programmer Should Know About Memory, by Ulrich Drepper

f

f f

f

f

DDR2, DDR3 and DDR4

4

I/O
buffer

DRAM
array

I/O
buffer

DRAM
array

f

4ff

2f2f

4f

Outline

❏ DRAM Evolution

❏ Motivation for Memory Research

❏ Accurate and Fast Models are Needed

❏ SystemC / TLM2.0 coupling in gem5

❏ Gem5 Tips & Tricks

5

Motivation for Memory Research
❏ Widening gap between memory and CPU speeds

❏ Multiprocessors continue to scale

❏ Higher communication demands within the same power budget

❏ Memory-bound programs do not scale with CPU speed improvements

❏ Performance of many applications are already memory-bounded

❏ Huge memory data sets

❏ Working set size (local and global)

❏ Several memory technologies, HMC, HBM, WIDE I/O, DDRx SDRAM,
eDRAM, ...

❏ For the NVDIMM-P paradigm:
❏ DRAM transparent to the host or visible to the host?
❏ Challenges for host controller, DIMM controller, OS, ...

6

Moving data is Energy Expensive

7

Source: GPU Computing to exascale and beyond, Bill Dally slides - NVIDIA

Source: Subhasish Mitra

DRAM Energy Contribution

8

Outline

❏ DRAM Evolution

❏ Motivation for Memory Research

❏ Accurate and Fast Models are Needed

❏ SystemC / TLM2.0 coupling in gem5

❏ Gem5 Tips & Tricks

9

VP is key for memory exploration

❏ Power usage profiles
❏ Energy efficiency
❏ Latency
❏ Sustained mem. bandwidth
❏ Bottlenecks
❏ Impact of architectural changes

10

Virtual prototypes enable us to get a good grasp of:

Valuable tools make us agile.

www.uni-kl.de/3d-dram/toolsgem5.org www.doulos.com/knowhow/systemc

DRAM Power Model on gem5

The DRAM Power Model on gem5 is implemented by DRAMPower

11

github.com/tukl-msd/DRAMPowerwww.es.ele.tue.nl/drampower

❏ DRAMPower is build as a library and linked
to gem5

❏ Each Rank object has an instance of the
DRAMPower object

❏ Mem. Specs are given to the constructor

❏ During operation DRAM commands are
passed to the library

❏ Energy components (rd, rw, act, pre, ref,...)
are returned together with the total energy for
the current time window

$ ls ext/drampower

$ vim src/mem/dram_ctrl.hh

$ vim src/mem/dram_ctrl.cc

$ grep “power.powerlib” * -nrIil

Coming soon to gem5!

❏ Bankwise DRAMPower

❏ DRAM banks are getting denser (e.g., DDR2 to DDR4
bank density increases from 0.5 Gb to 2 Gb. Similar
trend for LPDDRx).

❏ Per bank contribution to the total power is increasing.
Chip level power estimations may get less accurate
when per-bank features are used.

❏ Required for modeling features like independent
per-bank refresh and PASR.

❏ Temperature aware DRAMPower

❏ Exponential increase in currents with temperature

12

E.g., Partial Array Self Refresh (PASR)

❏ Power down mode with
maximum energy savings

❏ Complete DRAM is
blocked from other
commands

❏ DRAM manages refreshes
internally

❏ DDR3 DRAM has 8 PASR
modes

13

Bank 0 Bank 2 Bank 3

Bank 4 Bank 5 Bank 6 Bank 7

PASR Modes

000

Bank 1

011

Courtesy Figure: chipworks.com

Self Refresh

Full Array 1

Memory research with gem5

What do we need to explore DRAMs?

❏ Realistic Workload which requires a full system simulator
❏ Realistic Controller Model
❏ DRAM power model

For Example:

DRAM
Vendor

Data Sheets

Tools rely on Datasheets!

❏ Datasheets are pessimistic due to
large process margins

❏ How to explore future DRAM
architectures?

14

Estimation of future DRAM devices

DRAMSpec generates datasheets for current and future DRAM devices

❏ DRAMSpec is verified against datasheets and measurements
❏ It can even be used by non-DRAM experts
❏ Very fast execution time compared to circuit level simulation
❏ Generate specs to DRAMPower and gem5 (e.g., HMC model)

15

Hybrid Memory Cube

❏ 3D stack of DRAM layers
❏ Logic layer at the base
❏ HMC crossbar for routing
❏ Per-vault controller
❏ TSV connecting dies
❏ Serial links connect HMC to

host

16

Tx Rx

Each line working at Gpbs

Max. Bandwidth per link:
16 lanes x 2 x 10 Gbps

320 Gbps / link
(160 Gbps each direction)

HMC Simulation Model

HMC Host side
contains Traffic
generator setup and
model of serial links

Device contains
crossbars vault
controller and
memory vaults

17

CPU / Workload / Traffic gen

HMC System

Serial Links + SerDes (1-4)

Crossbar (link to vaults)

Vault controller

Memory

HMC hello world on gem5

18

$ build/ARM/gem5.fast -d hmc_hello configs/example/hmc_hello.py

$ cd hmc_hello

$ okular config.dot.pdf

$ vim configs/example/hmc_hello.py

Outline

❏ DRAM Evolution

❏ Motivation for Memory Research

❏ Accurate and Fast Models are Needed

❏ SystemC / TLM2.0 coupling in gem5

❏ Gem5 Tips & Tricks

19

❏ High-speed functional software models of physical hardware
❏ Visibility and controllability over the entire system
❏ Powerful debugging and analysis tools
❏ Reuse of components for future projects
❏ Fast design space exploration (for HW engineers)
❏ Easy to exchange, worldwide
❏ Concurrent HW and SW development:

Virtual Prototypes In Industry

20

E
ffo

rt

Time-to-Market

Hardware
development

Software
development

Testing /
Integration

Product support
and maintenanceProduct support & maintenance

• Earlier TTM

• Higher Quality

SystemC IEEE 1666

❏ Modeling language for HW and SW components

❏ Extends C++ to an event-driven simulation kernel

❏ Different levels of accuracy

❏ IEEE Standard, Maintained by Accellera

❏ 10-100x Faster than CA VHDL/Verilog Simulation

→However, standard CA SystemC is not fast enough to

 boot, an operating system.

21

Transaction Level Modeling

TLMCA
SystemC

Pin Accurate

Simulate every event! 100-10,000 X faster simulation!

CA
SystemC

TLM

Function Call

CLK

CLK

Source: Doulos website www.doulos.com

Generic Payload

Initiator
(CPU)

Interconnect
(BUS)

Command
Address
Data
Byte Enables
Response Status

Extensions

Generic payload object

Payload
reference

Initiator
Socket

Target
Socket

Initiator
Socket

Initiator
Socket

Target
Socket

Target
(MEM)

Target
(I/O)

&

23

Tool Vendors for TLM 2.0 VP

TLM is widely used in Industry:
The market of virtual platform tools:

❏ Synopsys - Platform Architect
❏ Cadence - Virtual System Platform
❏ Mentor Graphics - Vista Virtual prototyping
❏ Imperas - OpenVP
❏ ASTC - VLAB Works

Virtual Platform Core Models:
❏ ARM (Fastmodels):

❏ only LT models based on JIT, non-free, library
❏ ARM Carbon (Former Carbon Design Systems):

❏ Cycle Accurate (CA) Models in TLM Wrapper, non-free, library
❏ Imperas / OVP:

❏ only LT, Free

→ An accurate, freely available and changeable core model is needed

24

Coupling gem5 with SystemC

gem5 supports a SystemC coupling:

❏ Gem5 is build as a C++ library.

❏ It is linked into a SystemC simulation.

❏ A SystemC object implements the gem5
event queue.

❏ Communication is done via TLM

Events

Logic

Time

Gem5SimControl

Events

Logic

Time

25

Transaction Models in gem5

Timing

❏ The most detailed access: queuing delay + resource contention

❏ Similar to the TLM nb_transport interface.

Atomic

❏ Accesses are a faster than detailed access

❏ Used for fast forwarding and warming up caches

❏ Similar to the TLM b_transport interface

❏ Not good for performance simulation

Functional

❏ Similar to transport_dbg e.g. loading binaries, avoiding deadlocks in
multi-level cache coherent networks

26

Converting between TLM and gem5

Slave
Transactor

External
Slave

Master Target

External
Master

Master
Transactor

Initiator Slave

recvFunctional(…) → transport_dbg(…)
recvAtomic(…) → b_transport(…)
recvTimingReq(…) → nb_transport(…)

transport_dbg(…) → recvFunctional(…)
b_transport(…) → recvAtomic(…)
nb_transport(…) → recvTimingReq(…)

27

Transaction Explained

Slave
Transactor

External
Slave

BUSCPU Memory

gem5 World SystemC World

command
data_ptr
address
data_length
byte_enable_ptr
streaming_width

Extensions

Generic Payload Object

&

Cmd
Data
Addr
Size
Flags

gem5 Packet

&

UPDATECOPY

Sender State

28

Study the Examples in /gem5/utils/tlm/
❏ Slave Example:

❏ Master Example:

❏ Full System Example:

How to get Started?

Slave
Transactor

External
Slavegem5

Traffic
Generator

TLM
Simple

Memory
membus

../../build/ARM/gem5.opt ../../configs/example/fs.py \

--tlm-memory=transactor --cpu-type=TimingSimpleCPU --num-cpu=1 \

--mem-type=SimpleMemory --mem-size=512MB --mem-channels=1 --caches \

--l2cache --machine-type=VExpress_EMM \

--dtb-filename=vexpress.aarch32.ll_20131205.0-gem5.1cpu.dtb \

--kernel=vmlinux.aarch32.ll_20131205.0-gem5 \

--disk-image=linux-aarch32-ael.img

External
Master

Master
Transactor

TLM
Traffic

Generato
r

gem5
Memorymembus

29

https://gem5.googlesource.com/public/gem5/+/master/util/tlm/examples

Practical Usage: General Flow

1. Compile gem5 normally: scons build/ARM/gem5.opt

2. Compile gem5 as a library:
scons --with-cxx-config --without-python build/ARM/libgem5_opt.so

3. Include the gem5 modules Gem5SimControl and Gem5SlaveTransactor
and/or Gem5MasterTransactor in your SystemC project and connect them to
your SystemC models. Be sure to pass an individual port name to the
constructor of each transactor.

4. Compile your project and link against the gem5 library.

5. Run normal gem5 with a custom python script or fs.py with
--tlm-memory=<port-name> to generate m5out/config.ini. Be sure to set the
tlm_data attribute of the External Masters/Slaves to the port name of the
corresponding SystemC transactor.

6. Run your SystemC project and pass the m5out/config.ini file to your
Gem5SimControl object.

30

A Memory Module in SystemC

→ util/tlm/examples/slave_port/sc_target.hh

struct Target: public sc_module {
 // TLM interface socket:
 tlm_utils::simple_target_socket<Target> socket;

 // Storage
 unsigned char *mem;

 // Constructor
 Target(sc_core::sc_module_name name, /* ... */);
 SC_HAS_PROCESS(Target);

 // TLM interface functions
 virtual void b_transport(tlm::tlm_generic_payload& trans,
 sc_time& delay);
 virtual unsigned int transport_dbg(tlm::tlm_generic_payload& trans);
 virtual tlm::tlm_sync_enum nb_transport_fw(
 tlm::tlm_generic_payload& trans,
 tlm::tlm_phase& phase,
 sc_time& delay);

 // ...
};

31

Connect the Memory to gem5

→ util/tlm/examples/slave_port/main.cc

Slave
Transactor

Target
“memory”

“transactor”

Gem5Sim
Control
“gem5”

socket

socket

sim_control

int sc_main(int argc, char **argv)
{
 // Instantiate all modules
 Gem5SystemC::Gem5SimControl
 sim_control("gem5", /* config ... */);
 Gem5SystemC::Gem5SlaveTransactor
 transactor("transactor", "transactor");
 Target memory("memory", /* config ... */);

 // Bind modules
 memory.socket.bind(transactor.socket);
 transactor.sim_control.bind(sim_control);

 // Start simulation
 sc_core::sc_start();

 return EXIT_SUCCESS;
}

32

Configure gem5

→ util/tlm/conf/tlm_slave.py

External
Slave

TrafficGen
“cpu”

IOXBar
“membus”

“tlm”

Create a system with a Crossbar and a TrafficGenerator
system = System()
system.membus = IOXBar(width = 16)
This must be instanciated, even if not needed
system.physmem = SimpleMemory()
system.cpu = TrafficGen(config_file = "tgen.cfg")
system.clk_domain = SrcClockDomain(clock = '1.5GHz',
 voltage_domain = VoltageDomain(voltage = '1V'))

Create an external TLM port:
system.tlm = ExternalSlave()
system.tlm.addr_ranges = [AddrRange('512MB')]
system.tlm.port_type = "tlm_slave"
system.tlm.port_data = "transactor"

Route the connections:
system.cpu.port = system.membus.slave
system.system_port = system.membus.slave
system.membus.master = system.tlm.port

Start the simulation:
root = Root(full_system = False, system = system)
root.system.mem_mode = 'timing'
m5.instantiate()
m5.simulate()

33

Run the Simulation

1. Build the example: $ cd util/tlm && scons

2. Create a gem5 config.ini file:
$../../build/ARM/gem5.opt conf/tlm_slave.py

3. Run the simulation:
$ build/examples/slave_port/gem5.sc m5out/config.ini

TrafficGen
“cpu”

IOXBar
“membus” Slave

Transactor

Target
“memory”

“transactor”

Gem5Sim
Control
“gem5”

socket

socket

sim_control

External
Slave

“tlm”

34

Simulation Output

$ build/examples/slave_port/gem5.sc m5out/config.ini -e 200000 -d TrafficGen

[…]

0 s (=) : sc_main Start of Simulation

info: Entering event queue @ 0. Starting simulation...

5 ns (=) : system.cpu LinearGen::getNextPacket: r to addr 0, size 4

5 ns (=) : system.cpu Next event scheduled at 10000

10 ns (=) : system.cpu LinearGen::getNextPacket: w to addr 4, size 4

15 ns (=) : system.cpu Received retry

15 ns (=) : system.cpu LinearGen::getNextPacket: r to addr 8, size 4

16675 ps (=) : system.cpu Received retry

75 ns (=) : system.cpu Received retry

75 ns (=) : system.cpu LinearGen::getNextPacket: r to addr c, size 4

[…]

Exit at tick 200000, cause: simulate() limit reached

The binary expects various options:
■ -e end of simulation at tick

■ -d set a gem5 debug flag

35

Outline

❏ DRAM Evolution

❏ Motivation for Memory Research

❏ Accurate and Fast Models are Needed

❏ SystemC / TLM2.0 coupling in gem5

❏ Gem5 Tips & Tricks

36

gem5 Tips & Tricks

Motivation:
❏ gem5 has Lots of features,

therefore lots of details!
❏ gem5’s learning curve starts

slow.
❏ People get motivated to

deep exploration when basic
things work.

❏ Easy to remember all those
tricks we learned in the past
if they are in a repo!

37

github.com/tukl-msd/gem5.TnT

$ git clone https://github.com/tukl-msd/gem5.TnT.git
$ cd gem5.TnT

$ sudo bash dep_install.sh

$ bash get_essential_repos.sh

$ bash get_essential_fs.sh

$ bash get_benchmarks.sh

$ cd arch/arm

$ bash run_arm_fs_android_ics.sh

Take Away Message

❏ Memory subsystem is complex
❏ DRAM devices have complex interface timing
❏ Large varying access time and energy consumption
❏ It is important to model this complex behavior very accurately but

at the same time with high simulation speed
❏ Several interfaces HMC serial, HBM highly parallel, 3D DRAM

TSVs + external interface
❏ Temperature issues (refresh interval)
❏ Hybrid Memory Systems (DRAM + NVM)
❏ From HW to OS many challenges!

“The Memory System: You Can't Avoid It,You Can't
Ignore It, You Can't Fake It”. (Bruce Jacob)

38

Acknowledgements

Many thanks to the people that developed and/or collaborated to the
research projects mentioned in this presentation.

Aasheesh Kolli, Abdul Mutaal, Ali Saidi, Andreas Hansson, Aniruddha
N. Udipi, Arkaprava Basu, Benny Akesson, Bradford Beckmann, Carl
Rheinländer, Chirag Sudarshan, Christian Menard, Christian Weis,
David A. Wood, Deepak M. Mathew, Derek R. Hower, Felipe Prado,
Gabriel Black, Jason Lowe-Power, Jeronimo Castrillon, Joel Hestness,
Karthik Chandrasekar, Kees Goossens, Korey Sewell, Mark D. Hill,
Martin Schultheis, Matthias Jung, Muhammad Shoaib, Nathan Binkert,
Neha Agarwal, Nilay Vaish, Norbert Wehn, Omar Naji, Radhika
Jagtap, Rathijit Sen Stefan Diestelhorst, Steven K. Reinhardt,
Somayeh Sardashti, Subash Kannoth, Sven Goossens, Thomas
Wenisch, Tushar Krishna, Yonghui Li.

39

Other contributions and collaborations

❏ Elastic Traces - an alternative approach to speed-up simulation

❏ DRAM power-down states in gem5 - more sophisticated
memory controller model

40

Thank you
For more information visit ems.eit.uni-kl.de

41

References
[1] System Simulation with gem5 and SystemC: The Keystone for Full Interoperability, Christian Menard,

Matthias Jung, Jeronimo Castrillon, Norbert Wehn, Proceedings of the IEEE International Conference on
Embedded Computer Systems Architectures Modeling and Simulation (SAMOS), Jul 2017.

[2] Exploring System Performance using Elastic Traces: Fast, Accurate and Portable, Radhika Jagtap,
Stefan Diestelhorst, Andreas Hansson, Matthias Jung, Norbert Wehn, IEEE International Conference on
Embedded Computer Systems Architectures Modeling and Simulation (SAMOS), July, 2016, Samos Island,
Greece.

[3] DRAMPower: Open-source DRAM Power & Energy Estimation Tool Karthik Chandrasekar, Christian
Weis, Yonghui Li, Sven Goossens, Matthias Jung, Omar Naji, Benny Akesson, Norbert Wehn, and Kees
Goossens URL: http://www.drampower.info

[4] A Bank-Wise DRAM Power Model for System Simulations D. M. Mathew, É. F. Zulian, S. Kannoth, M.
Jung, C. Weis, N. Wehn. International Conference on High-Performance and Embedded Architectures and
Compilers 2017 (HiPEAC), Workshop on: Rapid Simulation and Performance Evaluation: Methods and Tools
(RAPIDO), January, 2017, Stockholm, Sweden.

[5] Simulating DRAM controllers for future system architecture exploration. Andreas Hansson, Neha
Agarwal, Aasheesh Kolli, Thomas Wenisch and Aniruddha N. Udipi. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS), March 2014.

[6] The gem5 Simulator. Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey
Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. May 2011, ACM SIGARCH
Computer Architecture News.

[7] DRAMSpec: A High-Level DRAM Timing, Power and Area Exploration Tool C. Weis, A. Mutaal, O. Naji,
M. Jung, A. Hansson, N. Wehn. International Journal of Parallel Programming (IJPP), Springer, 2016.

42

References
[8] Integrating DRAM Power-Down Modes in gem5 and Quantifying their Impact R. Jagtap, M. Jung, W.

Elsasser, C. Weis, A. Hansson, N. Wehn. International Symposium on Memory Systems (MEMSYS 2017),
October, 2017, Washington, DC, USA.

[9] Exploring system performance using elastic traces: Fast, accurate and portable. Radhika Jagtap,
Matthias Jung, Stephan Diestelhorst, Andreas Hansson, Norbert Wehn. IEEE International Conference on
Embedded Computer Systems: Architectures, Modeling and Simulation (SAMOS), 2016

[10] The Memory System: You Can't Avoid It, You Can't Ignore It, You Can't Fake It, Bruce Jacob, Morgan
and Claypool Publishers, 2009

[11] What every programmer should know about memory, Ulrich Drepper, 2007, URL:

43

