Learning gem5 – Part N

Other things not covered here

Jason Lowe-Power

http://learning.gem5.org/
https://faculty.engineering.ucdavis.edu/lowepower/
Full system support

Full system is like a virtual machine.

gem5 exposes a “bare metal” interface

Requires a kernel, disk image, etc.

See http://learning.gem5.org/book/part5/ for simple x86 example
Full system vs Syscall emulation

Full system (FS) mode:
- Runs unmodified OS
- Like QEMU/hypervisor
- Emulates or models all devices
- Some ISAs supported better than others

Syscall emulation (SE) mode:
- Runs user-mode binaries
- Decoder catches syscalls
- Emulates the effect
 - `sim/syscall_emul`
- Different impl. for each ISA
GPU and device models

AMD recently released a HSAIL GPU model (src/gpu-compute)

Many devices supported for FS simulation
 Ethernet (and multi-system simulation)
 VNC for graphics
 IDE controllers for disks
 No Mali GPU for ARM
 VirtIO

Most devices are functional-only
Other features

Probes and tracing

Remote GDB

Dynamically-linked binaries in SE mode

Power modeling and PMU

And many, many, many others
Caveats

gem5 is a tool, not a panacea

Most models are not validated against “real” hardware

See “Architectural Simulators Considered Harmful”
https://doi.org/10.1109/MM.2015.74

There are bugs!
Getting (more) help

Main gem5 wiki: http://gem5.org/
My book:
http://learning.gem5.org
https://github.com/powerjg/learning_gem5
Mailing lists: http://gem5.org/Mailing_Lists
 gem5-users: General user questions
 (you probably want this one)
 gem5-dev: Mostly code reviews and high-level
 dev talk