
Learning gem5 – Part II
Modifying and Extending gem5

Jason Lowe-Power
http://learning.gem5.org/

https://faculty.engineering.ucdavis.edu/lowepower/

© Jason Lowe-Power <jason@lowepower.com> 1

http://learning.gem5.org/
https://faculty.engineering.ucdavis.edu/lowepower/

A simple SimObject
http://learning.gem5.org/book/part2/helloobject.html

© Jason Lowe-Power <jason@lowepower.com> 2

gem5’s coding guidelines

Follow the style guide (http://www.gem5.org/Coding_Style)

Install the style guide when scons asks

Don’t ignore style errors

Use good development practices

Historically mercurial queues

Now: git branches

© Jason Lowe-Power <jason@lowepower.com> 3

http://www.gem5.org/Coding_Style

Adding a new SimObject

Step 1: Create a Python class

Step 2: Implement the C++

Step 3: Register the SimObject and C++ file

Step 4: (Re-)build gem5

Step 5: Create a config script

© Jason Lowe-Power <jason@lowepower.com> 4

Switch!

Step 1: Create a Python class

© Jason Lowe-Power <jason@lowepower.com> 5

| from m5.params import *
| from m5.SimObject import SimObject
|
| class HelloObject(SimObject):
| type = ‘HelloObject’
| cxx_header = ‘learning_gem5/hello_object.hh’

Import the objects we need

m5.params: Things like
MemorySize, Int, etc.

type: The C++ class name cxx_header: The filename for the
C++ header file

HelloObject.py

Step 2: Implement the C++

© Jason Lowe-Power <jason@lowepower.com> 6

| #include "params/HelloObject.hh"

| #include "sim/sim_object.hh"

| class HelloObject : public SimObject

| {

| public:

| HelloObject(HelloObjectParams *p);

| };

hello_object.hh params/*.hh generated
automatically. Comes from
Python SimObject definition

Constructor has one parameter,
the generated params object.

Step 2: Implement the C++

© Jason Lowe-Power <jason@lowepower.com> 7

HelloObject::HelloObject(HelloObjectParams *params)

: SimObject(params)

{

std::cout << "Hello World! From a SimObject!" << std::endl;

}

HelloObject*

HelloObjectParams::create()

{

return new HelloObject(this);

}

hello_object.cc

HelloObjectParams: when
you specify a Param in the
Hello.py file, it will be a
member of this object.

You must define this function
(you’ll get a linker error
otherwise). This is how Python
config creates the C++ object.

Step 3: Register the SimObject and C++ file

© Jason Lowe-Power <jason@lowepower.com> 8

| Import(*)

| SimObject(‘Hello.py’)

| Source(‘hello_object.cc’)

SConscript Import: SConscript is just
Python… but weird.

SimObject(): Says that this
Python file contains a SimObject.
Note: you can put pretty much
any Python in here

Source(): Tell scons to compile
this file (e.g., with g++).

Step 4: (Re-)build gem5

© Jason Lowe-Power <jason@lowepower.com> 9

Step 5: Create a config script

© Jason Lowe-Power <jason@lowepower.com> 10

| ...

| system.hello = HelloObject()

| ...

Instantiate the new object that
you created in the config file
(e.g., simple.py)

> build/X86/gem5.opt configs/learning_gem5/hello.py

...

Hello world! From a SimObject!

...

Simple SimObject code

gem5/src/learning_gem5/part2/hello_object.cc

gem5/src/learning_gem5/part2/hello_object.hh

gem5/src/learning_gem5/part2/HelloObject.py

gem5/configs/learning_gem5/part2/hello_run.py

© Jason Lowe-Power <jason@lowepower.com> 11

Debug support in gem5
http://learning.gem5.org/book/part2/debugging.html

© Jason Lowe-Power <jason@lowepower.com> 12

Adding debug flags

© Jason Lowe-Power <jason@lowepower.com> 13

Switch!
DebugFlag(‘Hello’)

DPRINTF(Hello, “Created the hello object”);

Declare the flag: add the
debug flag to the SConscript
file in the current directory

DPRINTF: macro for debug
statements in gem5

Hello: the debug flag
declared in the SConscript.
Found in “debug/hello.hh”

Debug string: Any C
format string

SConscript

hello_object.cc

Debugging gem5

© Jason Lowe-Power <jason@lowepower.com> 14

> build/X86/gem5.opt --debug-flags=Hello configs/tutorial/hello.py

...

0: system.hello: Hello world! From a debug statement

debug-flags: Comma separated list of
flags to enable. Other options include
--debug-start=<tick>,
--debug-ignore=<simobj name>,
etc. See gem5.opt --help

Event-driven programming
http://learning.gem5.org/book/part2/events.html

© Jason Lowe-Power <jason@lowepower.com> 15

Simple event callback

© Jason Lowe-Power <jason@lowepower.com> 16

Switch!| class HelloObject : public SimObject

| {

| private:

| ...

| void processEvent();

| EventFunctionWrapper event;

|

| public:

| HelloObject(HelloObjectParams *p);

| void startup();

| };

EventFunctionWrapper:
Convenience class for simple
events.

processEvent: Callback
function to run when
event fires.

startup: Called after all
SimObjects instantiated.
Schedule local events here.

Simple event callback

© Jason Lowe-Power <jason@lowepower.com> 17

| void

| HelloObject::processEvent()

| {

| timesLeft--;

| DPRINTF(Hello, "Hello world!"

| " Processing the event! %d left\n", timesLeft);

| if (timesLeft <= 0) {

| DPRINTF(Hello, "Done firing!\n");

| } else {

| schedule(event, curTick() + latency);

| }

| }

schedule: Put an event
instance on the event queue.
An absolute tick used for
when the event is processed.

curTick: Returns the current
simulator time. Useful for
relative time computations.

Event SimObject code

http://learning.gem5.org/book/_downloads/hello_object1.hh

http://learning.gem5.org/book/_downloads/hello_object2.cc

© Jason Lowe-Power <jason@lowepower.com> 18

http://learning.gem5.org/book/_downloads/hello_object1.hh
http://learning.gem5.org/book/_downloads/hello_object2.cc

SimObject parameters
http://learning.gem5.org/book/part2/parameters.html

© Jason Lowe-Power <jason@lowepower.com> 19

Switch!

Adding parameters

© Jason Lowe-Power <jason@lowepower.com> 20

| class HelloObject(SimObject):
| type = 'HelloObject'
| cxx_header = "learning_gem5/hello_object.hh"
|
| time_to_wait = Param.Latency("Time before firing the event")
| number_of_fires = Param.Int(1, "Number of times to fire the event before "
| "goodbye")

Param.<TYPE>: Specifies a
parameter of type <TYPE> for
the SimObject

Param.<TYPE>(): First
parameter: default value.
Second parameter: “help”

Going further: More parameters

Included types (e.g., MemorySize, MemoryBandwidth, Latency)

Using a SimObject as a parameter

SimObject-SimObject interaction

src/learning_gem5/part2/hello_object.cc & hello_object.hh

src/learning_gem5/part2/goodbye_object.cc & goodbye_object.hh

src/learning_gem5/part2/HelloObject.py & GoodbyeObject.py

© Jason Lowe-Power <jason@lowepower.com> 21

http://learning.gem5.org/book/part2/parameters.html

http://learning.gem5.org/book/part2/parameters.html

Questions?

We covered

How to build a SimObject

How to schedule events

Debug statements in gem5

Adding parameters to SimObjects

© Jason Lowe-Power <jason@lowepower.com> 22

MemObjects
http://learning.gem5.org/book/part2/memoryobject.html

© Jason Lowe-Power <jason@lowepower.com> 23

MemObject

Object that is part of gem5’s memory system

both classic caches and Ruby are MemObjects

Allowed to have MasterPorts and SlavePorts

© Jason Lowe-Power <jason@lowepower.com> 24

Packets

Unit of transfer between MemObjects

Packets pass between Master and Slave ports

Packets have
Request
Command
Data
Much more…

© Jason Lowe-Power <jason@lowepower.com> 25

Master and slave ports

© Jason Lowe-Power <jason@lowepower.com> 26

Master Slave

sendTimingReq recvTimingReq

returns: true Slave executes
request

Tim
e

sendTimingReq: send a Packet
containing a request from a
master to a slave

recvTimingReq: function that
is called to handle the request
in the slave port.

return true: The slave
can handle the request.

Master and slave ports

© Jason Lowe-Power <jason@lowepower.com> 27

Master Slave

sendTimingReq recvTimingReq

returns: true

returns: true

Slave executes
request

recvTimingResp sendTimingResp

Tim
e

sendTimingResp: The slave finishes
processing the request, and now
sends a response (same packet).

recvTimingResp: Handles the
response from the slave. Returning
true means the packet is handled.

Master and slave ports

© Jason Lowe-Power <jason@lowepower.com> 28

Master Slave

sendTimingReq recvTimingReq

returns: false
Slave busyTim

e

sendTimingReq recvTimingReq

returns: true

recvReqRetry sendReqRetry

return false: Slave cannot currently
process the Packet. Resend the
packet later. The Master’s
responsibility to track Packet.

sendReqRetry: Tell the master it
can retry the stalled Packet.

recvReqRetry: Can now
retry the request by
calling sendTimingReq.

Master and slave ports

© Jason Lowe-Power <jason@lowepower.com> 29

Master Slave

returns: false

recvTimingResp sendTimingResp

return false: Master cannot
currently process the Packet.
Resend the packet later. The Slave’s
responsibility to track Packet.

returns: true

recvTimingResp sendTimingResp

sendRespRetry recvRespRetry

sendRespRetry: Slave can now
retry the response.

Master and slave port interface

Master
recv Timing Resp

recv Req Retry

recv Range Change

Slave
recv Timing Req

recv Resp Retry

recv Functional

get Addr Ranges

© Jason Lowe-Power <jason@lowepower.com> 30

Simple MemObject

© Jason Lowe-Power <jason@lowepower.com> 31

Switch!

Overview of SimpleMemobj
© Jason Lowe-Power <jason@lowepower.com> 32

SimpleCache
http://learning.gem5.org/book/part2/simplecache.html

© Jason Lowe-Power <jason@lowepower.com> 33

Cache: A first “real” object

How to model…

Data storage

Tags

Associativity

Data access latency

Blocking?

© Jason Lowe-Power <jason@lowepower.com> 34

std::map

Make an event

Could implement MSHRS…

Design

Handle request -> accessTiming with a delay
AccessTiming

->accessFuntional to check for hit/miss
->if hit, reply
->if miss, upgrade request and send read

Handle response
-> insert new data (evict if needed)
-> accessFunctional to read/write
-> reply

© Jason Lowe-Power <jason@lowepower.com> 35

Switch!

More on events

schedule(new EventFunctionWrapper(

[this, pkt] { accessTiming(pkt); },

name() + ".accessEvent",

true),

clockEdge(latency));

© Jason Lowe-Power <jason@lowepower.com> 36

Anonymous function
to executeLocal variables to

“capture”

Delete this object
after executing event

Packet construction

Many different packet constructors
See src/mem/packet.hh for details

Packet(Request, command)

Packet(Request, command, block size)
Make a packet that is block aligned (overrides request address)

createRead/createWrite(Request)
Should probably use these convenience functions

© Jason Lowe-Power <jason@lowepower.com> 37

Packets data allocation

Dynamic data: Will be deleted when the packet is deleted

packet->allocate(): Allocates dynamic data

Static data: Give packet a pointer to the data. It will not delete it.

SenderState: Can be used to store “local” information

© Jason Lowe-Power <jason@lowepower.com> 38

Packets: To delete or not to delete

Do not delete to send a response

Call packet->makeResponse()

Do delete if you are the final sink for the packet

E.g., a memory write

Do delete if you initiated the request and then received the response

© Jason Lowe-Power <jason@lowepower.com> 39

Complete code available

Statistics

Better flow control

Code to make it work with O3CPU

Much more: http://learning.gem5.org/book/part2/simplecache.html

© Jason Lowe-Power <jason@lowepower.com> 40

http://learning.gem5.org/book/part2/simplecache.html

Questions?

We covered

How to make a MemObject

gem5 packets

The master – slave API in gem5

“Real” cache example

© Jason Lowe-Power <jason@lowepower.com> 41

