
Visualizing the out-of-order CPU model

Ryota Shioya
Nagoya University



22

Introduction

 This presentation introduces

◇ the visualization of the out-of-order CPU model in gem5 



33

Introduction

 Let's suppose 

◇ you come up with an excellent idea and 

◇ try to extend the CPU model in gem5 for adding your new method.

 You will probably tackle the following issues:

◇ difficult bugs, especially performance related ones

◇ a situation where your method cannot improve the performance as 

expected



44

Introduction

 You probably investigate  your modified gem5 as follows:

◇ Check counters outputted by gem5

☐ e.g. the number of LLC misses / branch mispredictions

☐ These counters sometimes give us clues.

◇ Check the behavior by using a debugger and step execution

 But, it is difficult to fix issues in the following situations:

◇ You have no idea what causes it

◇ You recognize some counters show that something is wrong, 

but you have no idea what happened



55

Visualizing the pipeline behavior

 In such situations, pipeline visualization is very useful.

 In general, visualization is a powerful tool for investigating bugs or 

behavior.

◇ If you have developed hardware with HDL such as Verilog, you 

may have used a waveform viewer.

☐ In a waveform view, you can easily see signal transitions and 

relations between signals.

☐ Such viewers may have helped you a lot.

 This is also true for gem5!



66

A text-based pipeline viewer is provided for gem5

 This viewer is very useful to investigate the pipeline behavior.

◇ But, you can see only a limited range of instruction sequences at once

◇ This is the "less" command itself, it is not very user-friendly.

This picture is from http://www.m5sim.org/Visualization



77

Konata: a new GUI based viewer

 You can see the pipeline behavior as a map app.

◇ This presentation introduces Konata and best practice in gem5.



88

Outline

1. A brief explanation of how to use 

2. Typical visualization examples

3. Use cases



99

Preparation

1. Install: All you have to do is to download the package and unpack it.

◇ https://github.com/shioyadan/Konata/releases

◇ Windows/Linux/Mac packages are provided.

◇ No additional runtime is not required

2. Start the executable file such as Konata.exe



1010

How to Use

1. Generate a trace log from gem5 with the O3 CPU model

◇ Execute gem5 with the following flags

◇ ./build/ARM/gem5.opt --debug-flags=O3PipeView --debug-start=<first 

tick of interest> --debug-file=trace.out configs/example/se.py

--cpu-type=detailed --caches -c <path to binary> -m <last cycle of 

interest>

◇ This example is from http://www.m5sim.org/Visualization

2. Load the generated "trace.out" to Konata

◇ from the menu in the window or using drag&drop



1111

How to use

 After loading the file, contents like the following are shown.

◇ Left side: instruction information such as a PC and mnemonic

◇ Right side: the image of visualized pipeline behavior



1212

How to see the visualized image

 The clock cycle proceeds from left to right 

◇ F : Instruction fetch

☐ In this insn., the fetch latency is  2 cycles

◇ Dc : Instruction Decode

◇ Rn : Rename

◇ Ds : Dispatch

◇ IS : Issue

◇ Cm : Completion of execution

☐ The execution stage is not explicitly shown

◇ (The end of Cm stages) : Retire

Cycle   0   1   2   3   4   5   6   7   8   9   10  11



1313

Zoom in/out

 You can zoom in/out as follows:

zoom-in zoom-out



1414

Compare Two Pipelines

 Konata can show two pipelines overlapping as follows: 

1. Load two files

2. Right click -> "Transparent mode" & "Synchronize scroll"



1515

Typical Visualization Examples

 Introduce how the following things are shown:

1. Out-of-order execution

2. Branch misprediction

3. Cache miss

4. Execution speed



1616

Example: Out-of-order Execution

 Fetch and retirement, marked with the blue circles, are performed in-order

◇ Instruction issue, marked with the red circles, is performed out-of-order



1717

Example: Branch Misprediction 

◇ Flushed instructions are shown as dark ones

Flushed instructions

mispredicted branch



1818

Example: Cache Misses

 A cache miss is typically shown as a diamond-like shape when the 

image is zoomed out as follows

miss latency

miss latency

cache miss

cache miss



1919

Example: Cache Misses

 As it is zoomed out more, the pipeline is typically shown as follows

◇ This is the pipeline behavior of MCF in SPECCPU 2006

◇ This figure shows the performance is degraded by the cache misses
cache misses

cache misses

cache misses

cache misses



2020

Example: Execution Speed

◇ The slope of a pipeline shape roughly represents the execution 

speed (IPC).

◇ The following two pipelines show the execution of the same 10K 

instructions

1
0
K

in
st

ru
ct

io
n

 e
xe

cu
ti

o
n

clock cycle

Slower

It takes longer cycles and the slope is gentle

Faster

It takes shorter cycles and the slope is steep



2121

The slope of a pipeline shape roughly represents 

the execution speed (IPC)

 You can see the transition in the execution speed for each part of 

the program as follows

fast

slow

fast



2222

The slope of a pipeline shape roughly represents 

the execution speed (IPC)

◇ It is not accurate because flushed instructions are also shown.

◇ If you want to compare accurately, use "Hide flushed ops" option 

from the right click menu

fast

slow

fast



2323

Outline

1. A brief explanation of how to use 

2. Typical visualization examples

3. Use cases

1. Grasping the pipeline behavior

2. Comparing pipelines



2424

Grasping the pipeline behavior

 The pipeline visualization makes it easy to grasp the pipeline 

behavior

◇ Explain this by some use cases

 Let's suppose you newly add speculative execution with branch 

prediction

◇ (Of course, gem5 already has this feature

◇ Something wrong happens in recovery from mispredictions



2525

Investigating with a log

 For investigating your implementation, 

you probably:

◇ Check custom logs or your "printf" 

outputs such as the left example

◇ It records when/what instructions 

are flushed.

 It's very difficult to detect which point 

is incorrect from such text logs.



2626

Investigating with visualization

 By visualizing it, you can easily notice the incorrect point.

◇ There is the light instruction (not flushed) between the dark 

flushed instructions.

 Although this is an artificial example, 

◇ visualization gives us a lot of hints intuitively



2727

Another example: memory level parallelism

 One of my friends researched a theme related to memory level 

parallelism

◇ In short, his method improves the performance by performing 

multiple memory accesses in parallel

 He enlarged the size of the OoO scheduling window so that more 

memory accesses are performed in parallel

◇ But, the performance is not improved



2828

Another example: memory level parallelism

The pipeline is flushed

These instructions 
should be executed 
in parallel with the above

 He realized that something wrong happened from the following 

zoomed out image, 

◇ because the shape is unnatural

 He realized that the pipeline was flushed on a cache miss

◇ In this sequence, memory accesses should be performed in parallel

cache miss

cache miss



2929

The cause of the flush

 He examined the flushed instruction in detail and found the cause.

 This was because he used Alpha ISA

◇ In Alpha architecture, TLB miss causes a trap and the pipeline is 

flushed

◇ On a cache miss, a TLB miss often occurs

◇ So memory accesses cannot be performed in parallel

 It is not easily noticed simply by observing the counters in gem5.

◇ The shape or pattern of visualized pipelines often tell us hints.



3030

Outline

1. A brief explanation of how to use 

2. Typical visualization examples

3. Use cases

1. Grasping the pipeline behavior

2. Comparing pipelines



3131

Comparing pipelines

 Let's suppose 

◇ your new method seems to work correctly,

◇ but it does not improve the performance as you expected.

 Konata can compare two pipelines.

◇ It is useful when investigating the above situation.



3232

Example of comparing

◇ My friend implemented the new method to the baseline CPU.

◇ Konata can show two pipelines overlapping.

☐ Blue shows a baseline pipeline

☐ Orange shows a pipeline with a new method



3333

Example of comparing

◇ The orange one (new) is basically faster than the blue one (baseline)



3434

Example of comparing

 In the zoomed-in image,

◇ in some places, the fetching of the orange is unreasonably delayed.

◇ This was caused by a bug in fact.

The fetch of 
the orange is
delayed.



3535

Comparing pipelines

 Visual comparison is very effective for analysis when adding new 

features to gem5.

◇ If the performance is not improved as expected, something is 

delayed.

◇ You can detect such parts by visual comparison.

☐ It is easy to see which part is different.



3636

Conclusion

 It is generally difficult to investigate the cause of a bug related to the 

performance.

◇ Especially, when you have no idea what happened.

 In such cases, visualization is very useful.

◇ This presentation introduced the pipeline visualization in gem5

 Please try it!

◇ It is simply fun to see how the processor works.

◇ https://github.com/shioyadan/Konata/releases


