
Visualizing the out-of-order CPU model

Ryota Shioya
Nagoya University

22

Introduction

 This presentation introduces

◇ the visualization of the out-of-order CPU model in gem5

33

Introduction

 Let's suppose

◇ you come up with an excellent idea and

◇ try to extend the CPU model in gem5 for adding your new method.

 You will probably tackle the following issues:

◇ difficult bugs, especially performance related ones

◇ a situation where your method cannot improve the performance as

expected

44

Introduction

 You probably investigate your modified gem5 as follows:

◇ Check counters outputted by gem5

☐ e.g. the number of LLC misses / branch mispredictions

☐ These counters sometimes give us clues.

◇ Check the behavior by using a debugger and step execution

 But, it is difficult to fix issues in the following situations:

◇ You have no idea what causes it

◇ You recognize some counters show that something is wrong,

but you have no idea what happened

55

Visualizing the pipeline behavior

 In such situations, pipeline visualization is very useful.

 In general, visualization is a powerful tool for investigating bugs or

behavior.

◇ If you have developed hardware with HDL such as Verilog, you

may have used a waveform viewer.

☐ In a waveform view, you can easily see signal transitions and

relations between signals.

☐ Such viewers may have helped you a lot.

 This is also true for gem5!

66

A text-based pipeline viewer is provided for gem5

 This viewer is very useful to investigate the pipeline behavior.

◇ But, you can see only a limited range of instruction sequences at once

◇ This is the "less" command itself, it is not very user-friendly.

This picture is from http://www.m5sim.org/Visualization

77

Konata: a new GUI based viewer

 You can see the pipeline behavior as a map app.

◇ This presentation introduces Konata and best practice in gem5.

88

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

99

Preparation

1. Install: All you have to do is to download the package and unpack it.

◇ https://github.com/shioyadan/Konata/releases

◇ Windows/Linux/Mac packages are provided.

◇ No additional runtime is not required

2. Start the executable file such as Konata.exe

1010

How to Use

1. Generate a trace log from gem5 with the O3 CPU model

◇ Execute gem5 with the following flags

◇ ./build/ARM/gem5.opt --debug-flags=O3PipeView --debug-start=<first

tick of interest> --debug-file=trace.out configs/example/se.py

--cpu-type=detailed --caches -c <path to binary> -m <last cycle of

interest>

◇ This example is from http://www.m5sim.org/Visualization

2. Load the generated "trace.out" to Konata

◇ from the menu in the window or using drag&drop

1111

How to use

 After loading the file, contents like the following are shown.

◇ Left side: instruction information such as a PC and mnemonic

◇ Right side: the image of visualized pipeline behavior

1212

How to see the visualized image

 The clock cycle proceeds from left to right

◇ F : Instruction fetch

☐ In this insn., the fetch latency is 2 cycles

◇ Dc : Instruction Decode

◇ Rn : Rename

◇ Ds : Dispatch

◇ IS : Issue

◇ Cm : Completion of execution

☐ The execution stage is not explicitly shown

◇ (The end of Cm stages) : Retire

Cycle 0 1 2 3 4 5 6 7 8 9 10 11

1313

Zoom in/out

 You can zoom in/out as follows:

zoom-in zoom-out

1414

Compare Two Pipelines

 Konata can show two pipelines overlapping as follows:

1. Load two files

2. Right click -> "Transparent mode" & "Synchronize scroll"

1515

Typical Visualization Examples

 Introduce how the following things are shown:

1. Out-of-order execution

2. Branch misprediction

3. Cache miss

4. Execution speed

1616

Example: Out-of-order Execution

 Fetch and retirement, marked with the blue circles, are performed in-order

◇ Instruction issue, marked with the red circles, is performed out-of-order

1717

Example: Branch Misprediction

◇ Flushed instructions are shown as dark ones

Flushed instructions

mispredicted branch

1818

Example: Cache Misses

 A cache miss is typically shown as a diamond-like shape when the

image is zoomed out as follows

miss latency

miss latency

cache miss

cache miss

1919

Example: Cache Misses

 As it is zoomed out more, the pipeline is typically shown as follows

◇ This is the pipeline behavior of MCF in SPECCPU 2006

◇ This figure shows the performance is degraded by the cache misses
cache misses

cache misses

cache misses

cache misses

2020

Example: Execution Speed

◇ The slope of a pipeline shape roughly represents the execution

speed (IPC).

◇ The following two pipelines show the execution of the same 10K

instructions

1
0
K

in
st

ru
ct

io
n

 e
xe

cu
ti

o
n

clock cycle

Slower

It takes longer cycles and the slope is gentle

Faster

It takes shorter cycles and the slope is steep

2121

The slope of a pipeline shape roughly represents

the execution speed (IPC)

 You can see the transition in the execution speed for each part of

the program as follows

fast

slow

fast

2222

The slope of a pipeline shape roughly represents

the execution speed (IPC)

◇ It is not accurate because flushed instructions are also shown.

◇ If you want to compare accurately, use "Hide flushed ops" option

from the right click menu

fast

slow

fast

2323

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

1. Grasping the pipeline behavior

2. Comparing pipelines

2424

Grasping the pipeline behavior

 The pipeline visualization makes it easy to grasp the pipeline

behavior

◇ Explain this by some use cases

 Let's suppose you newly add speculative execution with branch

prediction

◇ (Of course, gem5 already has this feature

◇ Something wrong happens in recovery from mispredictions

2525

Investigating with a log

 For investigating your implementation,

you probably:

◇ Check custom logs or your "printf"

outputs such as the left example

◇ It records when/what instructions

are flushed.

 It's very difficult to detect which point

is incorrect from such text logs.

2626

Investigating with visualization

 By visualizing it, you can easily notice the incorrect point.

◇ There is the light instruction (not flushed) between the dark

flushed instructions.

 Although this is an artificial example,

◇ visualization gives us a lot of hints intuitively

2727

Another example: memory level parallelism

 One of my friends researched a theme related to memory level

parallelism

◇ In short, his method improves the performance by performing

multiple memory accesses in parallel

 He enlarged the size of the OoO scheduling window so that more

memory accesses are performed in parallel

◇ But, the performance is not improved

2828

Another example: memory level parallelism

The pipeline is flushed

These instructions
should be executed
in parallel with the above

 He realized that something wrong happened from the following

zoomed out image,

◇ because the shape is unnatural

 He realized that the pipeline was flushed on a cache miss

◇ In this sequence, memory accesses should be performed in parallel

cache miss

cache miss

2929

The cause of the flush

 He examined the flushed instruction in detail and found the cause.

 This was because he used Alpha ISA

◇ In Alpha architecture, TLB miss causes a trap and the pipeline is

flushed

◇ On a cache miss, a TLB miss often occurs

◇ So memory accesses cannot be performed in parallel

 It is not easily noticed simply by observing the counters in gem5.

◇ The shape or pattern of visualized pipelines often tell us hints.

3030

Outline

1. A brief explanation of how to use

2. Typical visualization examples

3. Use cases

1. Grasping the pipeline behavior

2. Comparing pipelines

3131

Comparing pipelines

 Let's suppose

◇ your new method seems to work correctly,

◇ but it does not improve the performance as you expected.

 Konata can compare two pipelines.

◇ It is useful when investigating the above situation.

3232

Example of comparing

◇ My friend implemented the new method to the baseline CPU.

◇ Konata can show two pipelines overlapping.

☐ Blue shows a baseline pipeline

☐ Orange shows a pipeline with a new method

3333

Example of comparing

◇ The orange one (new) is basically faster than the blue one (baseline)

3434

Example of comparing

 In the zoomed-in image,

◇ in some places, the fetching of the orange is unreasonably delayed.

◇ This was caused by a bug in fact.

The fetch of
the orange is
delayed.

3535

Comparing pipelines

 Visual comparison is very effective for analysis when adding new

features to gem5.

◇ If the performance is not improved as expected, something is

delayed.

◇ You can detect such parts by visual comparison.

☐ It is easy to see which part is different.

3636

Conclusion

 It is generally difficult to investigate the cause of a bug related to the

performance.

◇ Especially, when you have no idea what happened.

 In such cases, visualization is very useful.

◇ This presentation introduced the pipeline visualization in gem5

 Please try it!

◇ It is simply fun to see how the processor works.

◇ https://github.com/shioyadan/Konata/releases

